# Mending the "holes" in the "pipes" to reduce soil N<sub>2</sub>O emissions from organic and inorganic fertilizer-based systems

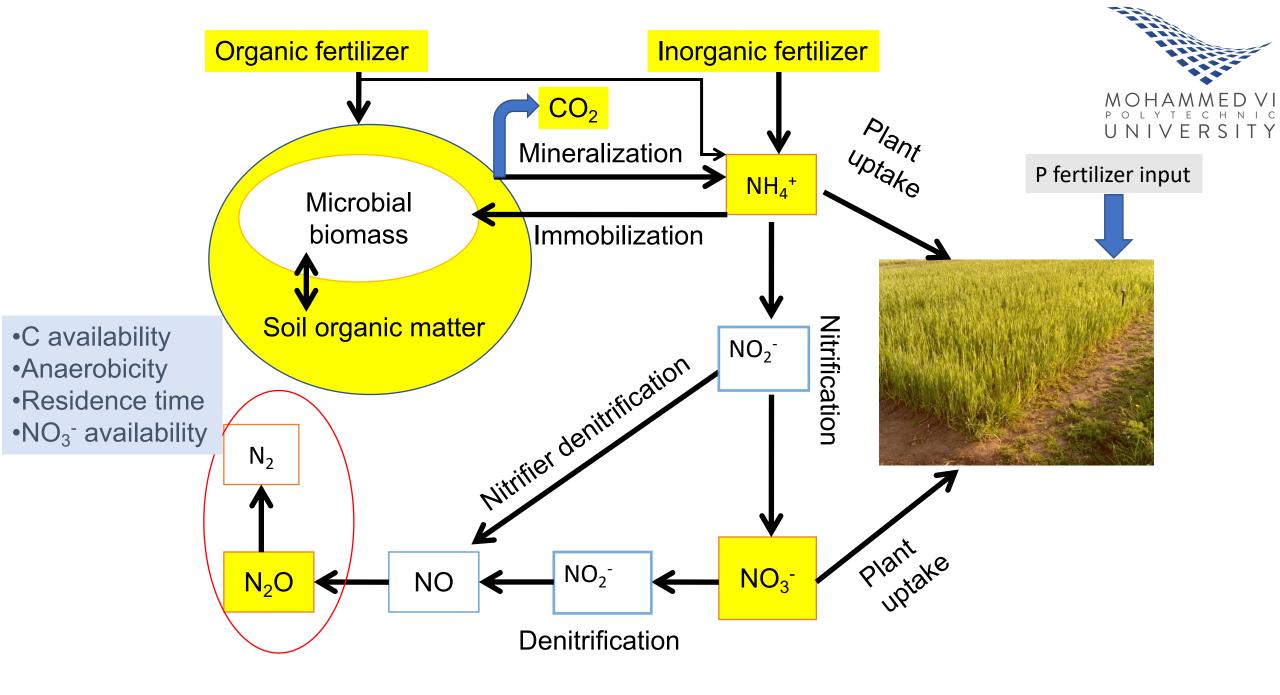


Ngonidzashe Chirinda

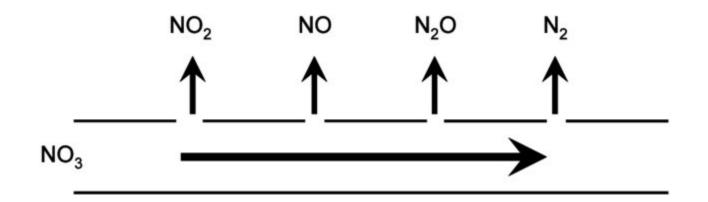
Professor in Sustainable Tropical Agriculture Climate Change Mitigation Panel Member for STAP of GEF







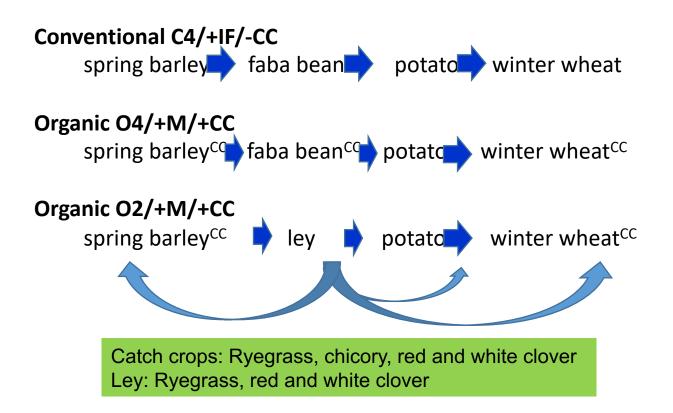





RESEARCH PROGRAM ON Roots, Tubers and Bananas




# Hole-in-the-pipe model



Davidson et al., 2000

#### Denmark story: Winter wheat and Spring barley

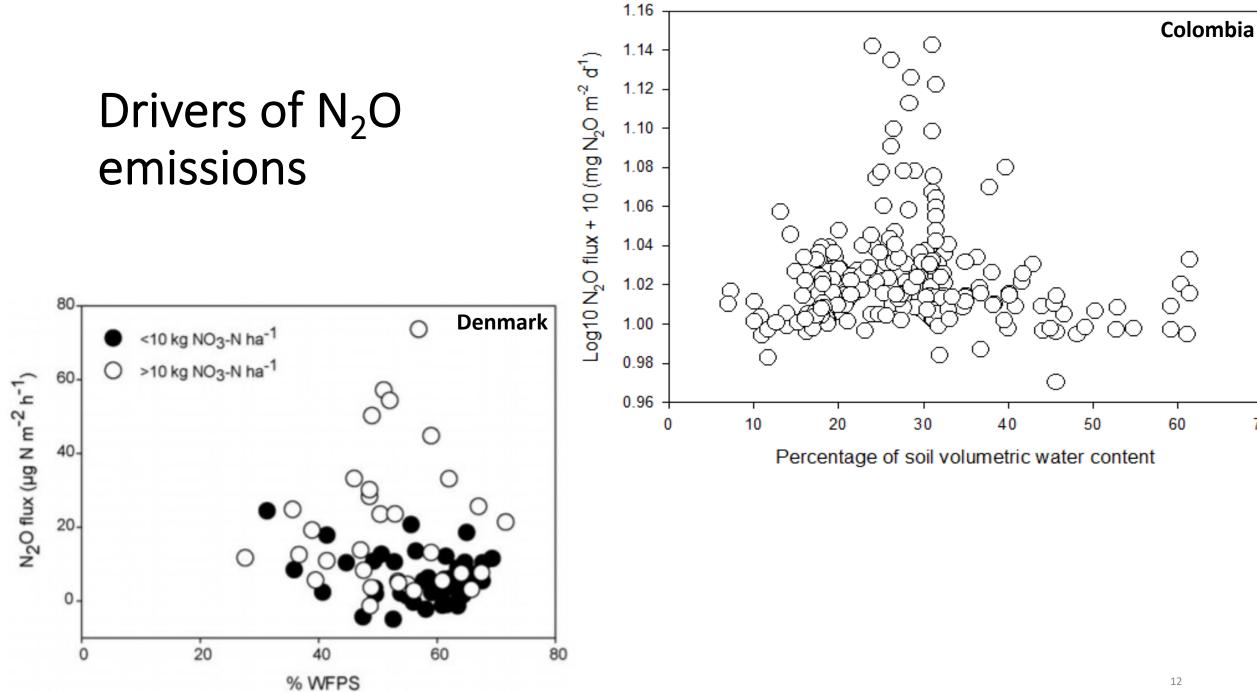
# **Cropping systems in long-term Danish experiment**



# Average C inputs in soils 2005-2007

| Cropping<br>systems | Average C inputs<br>(Mg C ha <sup>-1</sup> ) | Average N inputs (kg N y <sup>-1</sup> ) | N inputs for winter<br>wheat<br>(kg N ha <sup>-1</sup> ) |
|---------------------|----------------------------------------------|------------------------------------------|----------------------------------------------------------|
| C4/+IF/-CC          | <b>2.20</b> <sup>a</sup>                     | 109 (NH <sub>4</sub> NO <sub>3</sub> )   | 165                                                      |
| O4/+M/+CC           | 2.48 <sup>a</sup>                            | 70 (untreated pig slurry)                | 108                                                      |
| O2/+M/+CC           | 3.39 <sup>b</sup>                            | 70 (anaerobically digested pig slurry)   | 102                                                      |

### Winter wheat yields 2008


| System                             | Spring barley<br>(t ha <sup>-1</sup> ) |
|------------------------------------|----------------------------------------|
| C4/+IF/-CC (inorganic fertilizer)  | 9.5 <sup>a</sup>                       |
| O4/+M/+CC (untreated)              | 6.3 <sup>b</sup>                       |
| O2/+M/+CC (anaerobically digested) | 5.8 <sup>b</sup>                       |

# Cropping season N<sub>2</sub>O emissions

| Cropping systems | Cumulative soil N <sub>2</sub> O<br>emissions (kg N <sub>2</sub> O-N<br>ha <sup>-1</sup> ) | Emissions per N<br>applied<br>(kg N <sub>2</sub> O-N 100 kg <sup>-1</sup> N) |
|------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| C4/+IF/-CC       | 0.92 <sup>a</sup>                                                                          | 0.56 <sup>a</sup>                                                            |
| O4/+M/+CC        | 0.81 <sup>a</sup>                                                                          | 0.75 <sup>b</sup>                                                            |
| O2/+M/+CC        | 0.63 <sup>a</sup>                                                                          | 0.62 <sup>b</sup>                                                            |

#### Colombia story: Cassava

| Treatment                                                     | Applied N (kg<br>ha <sup>-1</sup> ) | Nitrate-<br>intensity<br>(g N kg dry<br>soil <sup>-1</sup> ) | Cumulative soil N <sub>2</sub> O<br>emissions (kg N <sub>2</sub> O-N<br>ha <sup>-1</sup> ) | Emission Factor (%) |
|---------------------------------------------------------------|-------------------------------------|--------------------------------------------------------------|--------------------------------------------------------------------------------------------|---------------------|
| Control                                                       | 0                                   | 1.84                                                         | 0.58ª                                                                                      |                     |
| Organic<br>fertilizer<br>(vermicompo<br>st)                   | 49.8                                | 2.15                                                         | 1.28 <sup>a</sup>                                                                          | 1.39                |
| Inorganic<br>fertilizer<br>(NH <sub>4</sub> NO <sub>3</sub> ) | 22.7                                | 3.78                                                         | 1.74 <sup>b</sup>                                                                          | 5.1                 |



# Key take home message

- N source may have a more substantial influence on N<sub>2</sub>O emissions than N applied under tropical climates (i.e., Colombia): Applied N higher in organic fertilizer amended soils – emissions lower.
- Under temperate conditions (i.e., Denmark): No difference in N<sub>2</sub>O emissions between organic and inorganic but N inputs higher in inorganic fertilizer systems
- Denmark: Low yields achieved with organic farming practices without a corresponding reduction in N<sub>2</sub>O emissions.
- Need for improving **N management strategies** to avoid surplus N in soil.

# References

- Chirinda, N., Carter, M.S., Albert, K.R, Ambus, P., Olesen, J.E., Porter, J.R., Petersen, S.O. (2010). Emissions of nitrous oxide from arable organic and conventional cropping systems on two soil types. Agriculture, Ecosystems and Environment 136, 199–208.
- Chirinda, N., Olesen, J.E., Porter, J.R. Schjønning, P. (2010). Soil properties, crop production and greenhouse gas emissions from organic and inorganic fertilizer-based arable cropping systems. Agriculture, Ecosystems and Environment 139, 584–594.
- Chirinda, N., Trujillo, C., Loaiza, S., Salazar, S., Luna, J., Encinas, L.A.T., Becerra López Lavalle, L. A., Tran, T. (2021). Nitrous oxide emissions from cassava fields amended with organic and inorganic fertilizers. Soil Use and Management DOI: 10.1111/sum.12696.